250x250
반응형
Notice
Recent Posts
Recent Comments
Link
일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
6 | 7 | 8 | 9 | 10 | 11 | 12 |
13 | 14 | 15 | 16 | 17 | 18 | 19 |
20 | 21 | 22 | 23 | 24 | 25 | 26 |
27 | 28 | 29 | 30 | 31 |
Tags
- BigQuery
- 유튜브 API
- session 유지
- Airflow
- youtube data
- 공분산
- TensorFlow
- GenericGBQException
- airflow subdag
- flask
- integrated gradient
- spark udf
- chatGPT
- tensorflow text
- hadoop
- 상관관계
- GCP
- grad-cam
- XAI
- Retry
- Counterfactual Explanations
- UDF
- API
- correlation
- API Gateway
- top_k
- gather_nd
- subdag
- requests
- login crawling
Archives
- Today
- Total
목록2024/10/24 (1)
데이터과학 삼학년
[비동기처리]Python Celery를 이용한 비동기 작업 처리
Python Celery를 이용한 비동기 작업 처리1. 비동기 작업 처리의 필요성현대 웹 애플리케이션은 실시간으로 대량의 요청을 처리해야 함.오래 걸리는 작업(이메일 전송, 이미지 처리 등)은 응답 지연을 유발할 수 있음.이를 해결하기 위해 비동기 작업 처리가 필요하며, Python에서 이를 구현할 때 주로 Celery를 사용.2. Celery란?Python 기반 비동기 작업 큐(Task Queue) 라이브러리.큐에 작업을 넣으면 백그라운드에서 워커(worker)가 처리함.분산 시스템 및 확장성 있는 작업 처리가 가능하며, 실시간 작업 처리와 스케줄링 지원. 3. Celery의 주요 구성 요소Task: 백그라운드에서 실행되는 작업.Broker: 작업을 전달하는 중간 매개체 (Redis, RabbitMQ ..
Python
2024. 10. 24. 23:59