250x250
반응형
Notice
Recent Posts
Recent Comments
Link
일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |
Tags
- API
- 상관관계
- login crawling
- tensorflow text
- BigQuery
- spark udf
- requests
- grad-cam
- Retry
- API Gateway
- UDF
- GenericGBQException
- flask
- subdag
- TensorFlow
- Counterfactual Explanations
- 공분산
- top_k
- youtube data
- gather_nd
- airflow subdag
- integrated gradient
- hadoop
- XAI
- chatGPT
- session 유지
- correlation
- Airflow
- 유튜브 API
- GCP
Archives
- Today
- Total
데이터과학 삼학년
[Clustering] DBSCAN 본문
반응형
DBSCAN : 밀도기반의 클러스터링 기법
-> knn, k-means의 경우, 각 데이터 별 일정거리를 통해서 클러스터링을 하는 방법이라면,
DBSCAN 은 데이터의 밀집도(밀도)를 통해 군집을 나누는 방법이다.
DBSCAN의 장점은 비선형의 클러스터링이 가능하다는 것이다.
앱실론과 minspoint 수를 통해 클러스터링을 지정함 (파라미터)
-
앱실론 : 중심점으로부터 거리
-
minspoint : 앱실론 반경내에 샘플의 갯수
지정한 앱실론과 min 포인트수를 통해 밀도를 구하고 클러스터링 함
- 반경안에 들어오지 못한 points 는 noise point
코드
print(__doc__)
import numpy as np
from sklearn.cluster import DBSCAN
from sklearn import metrics
from sklearn.datasets import make_blobs
from sklearn.preprocessing import StandardScaler
# #############################################################################
# Generate sample data
centers = [[1, 1], [-1, -1], [1, -1]]
X, labels_true = make_blobs(n_samples=750, centers=centers, cluster_std=0.4,
random_state=0)
X = StandardScaler().fit_transform(X)
# #############################################################################
# Compute DBSCAN
db = DBSCAN(eps=0.3, min_samples=10).fit(X)
core_samples_mask = np.zeros_like(db.labels_, dtype=bool)
core_samples_mask[db.core_sample_indices_] = True
labels = db.labels_
# Number of clusters in labels, ignoring noise if present.
n_clusters_ = len(set(labels)) - (1 if -1 in labels else 0)
n_noise_ = list(labels).count(-1)
print('Estimated number of clusters: %d' % n_clusters_)
print('Estimated number of noise points: %d' % n_noise_)
print("Homogeneity: %0.3f" % metrics.homogeneity_score(labels_true, labels))
print("Completeness: %0.3f" % metrics.completeness_score(labels_true, labels))
print("V-measure: %0.3f" % metrics.v_measure_score(labels_true, labels))
print("Adjusted Rand Index: %0.3f"
% metrics.adjusted_rand_score(labels_true, labels))
print("Adjusted Mutual Information: %0.3f"
% metrics.adjusted_mutual_info_score(labels_true, labels))
print("Silhouette Coefficient: %0.3f"
% metrics.silhouette_score(X, labels))
# #############################################################################
# Plot result
import matplotlib.pyplot as plt
# Black removed and is used for noise instead.
unique_labels = set(labels)
colors = [plt.cm.Spectral(each)
for each in np.linspace(0, 1, len(unique_labels))]
for k, col in zip(unique_labels, colors):
if k == -1:
# Black used for noise.
col = [0, 0, 0, 1]
class_member_mask = (labels == k)
xy = X[class_member_mask & core_samples_mask]
plt.plot(xy[:, 0], xy[:, 1], 'o', markerfacecolor=tuple(col),
markeredgecolor='k', markersize=14)
xy = X[class_member_mask & ~core_samples_mask]
plt.plot(xy[:, 0], xy[:, 1], 'o', markerfacecolor=tuple(col),
markeredgecolor='k', markersize=6)
plt.title('Estimated number of clusters: %d' % n_clusters_)
plt.show()
참고: scikit-learn.org/stable/auto_examples/cluster/plot_dbscan.html#sphx-glr-auto-examples-cluster-plot-dbscan-py
728x90
반응형
LIST
'Machine Learning' 카테고리의 다른 글
PCA (Principal Component Analysis) - 주성분 분석 (0) | 2021.01.13 |
---|---|
Batch normalization 적용으로 train set 데이터의 정규화 대체! (0) | 2021.01.08 |
Anomaly Detection 종류(Point, Contextual, Collective) (0) | 2020.12.01 |
tf.keras serving function을 이용한 feature transform 적용 방법 (0) | 2020.11.25 |
Hierarchical temporal memory (HTM networks) (0) | 2020.08.11 |
Comments